A SiC-based Microcontroller for High-Temperature In-Situ Instruments and Systems, Phase I

NAS

Completed Technology Project (2015 - 2015)

Project Introduction

NASA has a need for electronics that can support proposed flagship missions such as a Venus surface lander. Devices that can operate at temperatures of up to 500°C are desired. Ozark IC and its partner, the University of Arkansas, have created the world's largest known library of CMOS silicon-carbide (SiC) analog and mixed-signal circuits, intellectual property (IP) and packages that can operate at very high temperatures. The key next component is a general-purpose SiC microcontroller to provide real-time programmability for these SiC support circuits. This Phase I proposal will use the extensive Ozark IC SiC library to develop a self-contained general-purpose SiC-CMOS microcontroller. When combined with data converters, gate drivers and other analog/mixed-signal circuitry, this microcontroller could serve in any number of high-temperature sample acquirement and analysis instruments.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ozark Integrated Circuits, Inc.	Lead Organization	Industry	Fayetteville, Arkansas
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

A SiC-based Microcontroller for High-Temperature In-Situ Instruments and Systems, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A SiC-based Microcontroller for High-Temperature In-Situ Instruments and Systems, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations		
Arkansas	Ohio	

Project Transitions

June 2015: Project Start

December 2015: Closed out

Closeout Summary: A SiC-based Microcontroller for High-Temperature In-Situ Instruments and Systems, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138760)

Images

Briefing Chart Image

A SiC-based Microcontroller for High-Temperature In-Situ Instruments and Systems, Phase I (https://techport.nasa.gov/imag e/133210)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Ozark Integrated Circuits, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Anthony M Francis

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A SiC-based Microcontroller for High-Temperature In-Situ Instruments and Systems, Phase I

Technology Areas

Primary:

- **Target Destinations**

Earth, The Moon, Others Inside the Solar System, Outside the Solar System, The Sun, Mars

